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The problems of multiple inclined or curved cracks in circular positions is treated by using the hypersingular integral
equation method. The cracks center are placed at the edge of a virtual circle with radius R. The first crack is fixed
on the x-axis while the second crack is located on the boundary of a circle with the varying angle, θ . A system of
hypersingular integral equations is formulated and solved numerically for the stress intensity factor (SIF). Numerical
examples demonstrate the effect of interaction between two cracks in circular positions are given. It is found that, the
severity at the second crack tips are significant when the ratio length of the second to the first crack is small and it is
placed at a small angle of θ .

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The multiple cracks problems that involved arbitrarily crack arrangement are common in many engineering structures.
Therefore there is a need to study the interaction between two arbitrary cracks configuration in order to explain the stress
distribution in the vicinity of two cracks and their effect on strength. The multiple two dimensional problems of inclined
and curved cracks can be investigated by determining the stress intensity factor (SIF). In previous years, Vialaton et al.
[8] used the complex potential method to determine the SIF for two identical length of collinear cracks in an infinite
plate under arbitrary concentrated loading. With the help of superposition technique, Kachanov [10, 11] showed that the
solution of interaction of multiple cracks problems leads in solving the system of linear algebraic equations. Furthermore,
many researchers used the integral equation methods for the numerical solution of multiple cracks problems. For example,
Panasyuk et al. [9] presented a singular integral equation using a perturbation method to solve multiple cracks problems.
Chen [12] used the complex variable function method to formulate the singular integral equation for multiple curved
cracks problems. In addition, Chen and Lin [13] investigated the multiple curved branch-cracks in term of singular integral
equation. Helsing [14] proposed a scheme for the numerical solution of singular integral equations on piecewise smooth
curves. Chen [17] and Chen et al. [2] used the Fredholm integral equation to solve multiple cracks problems. Hypersingular
integral equation has also been used to solve the multiple cracks problems. For example, Chen [18] solved the hypersingular
integral equation in a closed form which the unknowns are approximated by a weight function multiplied by a polynomial.
In addition, Nik Long and Eshkuvatov [3], Aridi et al. [20] and Nik Long et al. [5] used the complex variable function
method to formulate the hypersingular integral equation. The curved length coordinate method is then used to solve the
hypersingular integral equation numerically. Zozulya [21] developed hypersingular integral regularization and applied
it for the case of three dimensional crack problem. Moreover, Wang et al. [22] used hypersingular integral equation to
formulate and solve the micromechanical models. In addition, there are more cracks problems that were solved using the
hypersingular integral equations [23–30].

Formulation in terms of hypersingular integral equation for solving the problem of multiple inclined or curved cracks
in circular positions in plane elasticity is studied in this paper. Numerical examples are given to show the behavior of the
SIF at the crack tips, and are presented and displayed graphically.
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2 Problem statement and formulation

The stresses (σx, σy, σxy), the resultant force functions (X, Y ) and the displacements (u, v) are related to the complex
potentials �(z) and �(z) as follows [1]

σx + σy = 4Re�(z), (1)

σy − σx + 2iσxy = 2[z̄�′(z) + �(z)], (2)

f = −Y + iX = φ(z) + zφ′(z) + ψ(z) + c, (3)

2G(u + iv) = Kφ(z) − zφ′(z) + ψ(z), (4)

where �(z) = φ′(z) and �(z) = ψ ′(z), G is shear modulus of elasticity, K = (3 − v)/(1 + v) for plane stress, K = 3 − v

for plane strain, v as Poisson’s ratio, and z = x + iy. The derivative in a specified direction (abbreviated as DISD) is defined
as

d

dz
{−Y + iX} = �(z) + �(z) + dz̄

dz

(
z�′(z) + �(z)

)

= N + iT , (5)

where N + iT denotes the normal and tangential tractions along the segment z, z + dz which can be determined from
Fig. 1. The value of N + iT depends on both the position of point z as well as on the direction of the segment
dz̄/dz [2, 3].

It is known that the formulation for single inclined and single curved crack problem in term of hypersingular integral
equation is [19]

1

π
=
∫

L

g(t)dt

(t − t0)2
+ 1

2π

∫
L

K1(t, t0)g(t)dt + 1

2π

∫
L

K2(t, t0)g(t)dt = N(t0) + iT (t0), t0 ∈ L, (6)

where

K1(t, t0) = − 1

(t − t0)2
+ 1

(t̄ − t̄0)2

dt̄0

dt0

dt̄

dt
,

K2(t, t0) = − 1

(t̄ − t̄0)2

(
dt̄

dt
+ dt̄0

dt0

)
− 2(t − t0)

(t̄ − t̄0)3

dt̄0

dt0

dt̄

dt
,

and g(t) is the crack opening displacement (COD) distribution along the crack. It is also known that g(t) has the following
properties:

g(t) = O[
√

t − tAj
] at the crack tip Aj , j = 1, 2,

g(t) = O[
√

t − tBj
] at the crack tip Bj , j = 1, 2.

(7)

In Eq. (6), the first term is hypersingular integral and it is defined as a Hadamart finite part integral.
Consider two inclined cracks (Fig. 1) lie on the boundary of a virtual circular with radius R subjected to σ∞

x = σ∞
y = p.

By applying the superposition principle on g1(t1) along L1 and g2(t2) along L2, the hypersingular integral equation is
obtained as

1

π
=
∫

L1

g1(t1)dt1

(t1 − t10)2
+ 1

2π

∫
L1

K1(t1, t10)g1(t1)dt1 + 1

2π

∫
L1

K2(t1, t10)g1(t1)dt1 + 1

π

∫
L2

g2(t2)dt2

(t2 − t10)2

+ 1

2π

∫
L2

K1(t2, t10)g2(t2)dt2 + 1

2π

∫
L2

K2(t2, t10)g2(t2)dt2 = N1(t10) + iT1(t10), (8)

where N1(t10) + iT1(t10) is the traction applied at point t10 caused by COD function, g1(t1), on L1, and

K1(t1, t10) = − 1

(t1 − t10)2
+ 1

(t̄1 − t̄10)2

dt̄10

dt10

dt̄1

dt1
,

K2(t1, t10) = − 1

(t̄1 − t̄10)2

(
dt̄1

dt
+ dt̄10

dt10

)
− 2(t1 − t10)

(t̄1 − t̄10)3

dt̄10

dt10

dt̄1

dt1
,
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1484 R. A. Rafar et al.: Stress intensity factor for multiple inclined or curved cracks problem in circular positions

Fig. 1 Two inclined cracks placed in a circular position in plane
elasticity.

K1(t2, t10) = − 1

(t2 − t10)2
+ 1

(t̄2 − t̄10)2

dt̄10

dt10

dt̄2

dt2
,

K2(t2, t10) = − 1

(t̄2 − t̄10)2

(
dt̄2

dt2
+ dt̄10

dt10

)
− 2(t2 − t10)

(t̄2 − t̄10)3

dt̄10

dt10

dt̄2

dt2
.

Similarly, the hypersingular integral equation for L2 is

1

π
=
∫

L2

g2(t2)dt2

(t2 − t20)2
+ 1

2π

∫
L2

K1(t2, t20)g2(t2)dt2 + 1

2π

∫
L2

K2(t2, t20)g2(t2)dt2 + 1

π

∫
L1

g1(t1)dt1

(t1 − t20)2

+ 1

2π

∫
L1

K1(t1, t20)g1(t1)dt1 + 1

2π

∫
L1

K2(t1, t20)g1(t1)dt1 = N2(t20) + iT2(t20), (9)

where N2(t20) + iT2(t20) is the traction applied at point t20 caused by COD function, g1(t1), on L2 and

K1(t2, t20) = − 1

(t2 − t20)2
+ 1

(t̄2 − t̄20)2

dt̄20

dt20

dt̄2

dt2
,

K2(t2, t20) = − 1

(t̄2 − t̄20)2

(
dt̄2

dt2
+ dt̄20

dt20

)
− 2(t2 − t20)

(t̄2 − t̄20)3

dt̄20

dt20

dt̄2

dt2
,

K1(t1, t20) = − 1

(t1 − t20)2
+ 1

(t̄1 − t̄20)2

dt̄20

dt20

dt̄1

dt1
,

K2(t1, t20) = − 1

(t̄1 − t̄20)2

(
dt̄1

dt1
+ dt̄20

dt20

)
− 2(t1 − t20)

(t̄1 − t̄20)3

dt̄20

dt20

dt̄1

dt1
.

Equations (8) and (9) are solved for g1(t1) and g2(t2) concurrently.

3 Numerical examples

In solving Eqs. (8) and (9), we used the curved length coordinate method which transform the integral along the curves
into the real axis with interval of 2a and 2b by using the mapping functions t1(s1) and t2(s2), respectively. The functions
g1(t1) and g2(t2) can be defined as follows [12, 19]

g1(t1)|t1=t1(s1) =
√

a2 − s2
1H1(s1), (10)

g2(t2)|t2=t2(s2) =
√

b2 − s2
2H2(s2), (11)

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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where H1(s1) = H11(s1) + iH12(s1) and H2(s2) = H21(s2) + iH22(s2). Using these conversions, the system of integral
equations in (8) and (9) can be evaluate numerically as in [3, 12, 19]. The quadrature rules by Mayrhofer and Fisher [4]
which are used for solving the integral equations is described in the Appendix.

The stress intensity factor (SIF) at the crack tips can be evaluated respectively [3]

(K1 − iK2)Aj
=

√
2π lim

t1→tAj

√
|t1 − tAj

|g′
1(t1), j = 1, 2, (12)

and

(K1 − iK2)Bj
=

√
2π lim

t2→tBj

√
|t2 − tBj

|g′
2(t2), j = 1, 2, (13)

where g′
1(t1) and g′

2(t2) are obtained by solving Eqs. (8) and (9) simultaneously.

3.1 Example 1

Consider the interaction between two inclined cracks in circular positions in an infinite plate. For comparison purposes,
two inclined cracks are under uniaxial tension σ∞

y = p (Fig. 2). Both cracks are placed on the boundary of the virtual circle
where the second crack, L2, lies at an angle θ = 180◦. The SIFs at the crack tips A1, A2, B1, and B2 are expressed as

KiAj
= FiAj

(2a/d)p
√

πa,

KiBj
= FiBj

(2a/d)p
√

πb i, j = 1, 2.
(14)

Table 1 shows the calculated values of F1B1 and F1B2 , and a = b. It exhibits that our results have a good agreement with
those of [7].

Fig. 2 Two inclined cracks with equal length lie on the virtual
circular boundary with radius R.

Figs. 3 and 4 plot the nondimensional SIF against the angle of positions of second crack, θ , for two inclined cracks with
the angle of inclination is α1 = α2 = 20◦ and 60◦, respectively, (Fig. 1). The calculated SIFs at the crack tips A1, A2, B1,
and B2 are defined as

KiAj
= FiAj

(θ, b/a)p
√

πa,

KiBj
= FiBj

(θ, b/a)p
√

πb, i, j = 1, 2.
(15)

In Fig. 3, for the case b/a = 0.1, since the second crack is much smaller than the first crack, the nondimensional SIFs
at the first crack tips (Figs. 3 a and 3 b) are not fluctuating significantly, while the nondimensional SIFs at the second
crack tips (Figs. 3 c and 3 d) are varying significantly. The shielding effect on the second crack tips (Figs. 3 c and 3 d) for
b/a = 0.5 and 1.0 is found to be more stronger than the first crack tips (Figs. 3 a and 3 b) with an increasing angle θ . The
finding shows that the severity on the second crack is obvious as its length is half or equal to the first crack length.

www.zamm-journal.org C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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1486 R. A. Rafar et al.: Stress intensity factor for multiple inclined or curved cracks problem in circular positions

Table 1 A comparison of the nondimensional SIFs for two inclined cracks in an infinite plate with the previous numerical computation
(Fig. 2).

α = 20◦ α = 30◦

2a/d F1B1
* F1B1

** F1B2
* F1B2

** F1B1
* F1B1

** F1B2
* F1B2

**

0.1 0.8839 0.8847 0.8839 0.8847 0.7513 0.7503 0.7502 0.7503

0.2 0.8861 0.8866 0.8870 0.8877 0.7514 0.7516 0.7520 0.7522

0.3 0.8898 0.8900 0.8927 0.8934 0.7537 0.7534 0.7560 0.7559

0.4 0.8950 0.8956 0.9021 0.9027 0.7559 0.7560 0.7620 0.7620

0.5 0.9016 0.9023 0.9169 0.9175 0.7596 0.7595 0.7718 0.7718

0.6 0.9102 0.9108 0.9398 0.9404 0.7642 0.7640 0.7872 0.7871

0.7 0.9213 0.9218 0.9763 0.9767 0.7701 0.7698 0.8110 0.8110

0.8 0.9359 0.9363 1.0381 1.0382 0.7777 0.7775 0.8492 0.8490

0.9 0.9570 0.9570 1.1590 1.1600 0.7886 0.7881 0.9140 0.9140

1.0 0.9947 1.5124 0.8060 1.0465

1.1 0.8382 1.4528

* Present method
** Denda and Dong [7]

Fig. 3 Nondimensional SIF for two inclined cracks with α1 = α2 = 20◦ when θ is changing (Fig. 1).

Fig. 4 shows that the shielding effect on the second crack tips (Figs. 4 c and 4 d) is more significant than the first crack
tips (Figs. 4 a and 4 b). These observations show that the second crack is most affected as the angle θ increased. In addition,
the severity on the second crack for α1 = α2 = 60◦ (Fig. 4) is more serious than α1 = α2 = 20◦ (Fig. 3). For example,
in the case of b/a = 0.1 and θ = 48◦, the results for α1 = α2 = 60◦ are F1B1 = 0.38690 and F1B2 = 0.49104, while for
α1 = α2 = 20◦, we have F1B1 = 0.32533 and F1B2 = 0.31436.

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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Fig. 4 Nondimensional SIF for two inclined cracks with α1 = α2 = 60◦ and θ varies (Fig. 1).

Fig. 5 represents the nondimensional SIF versus the ratio b/a for α1 = α2 = 20◦. It can be seen that the crack tips has
the higher value of F1 at the angle θ = 180◦ than at the angle θ = 15◦ and 90◦. That is to say, both cracks have more
shielding effect at the angle θ = 180◦. In addition, at an angle θ = 15◦, the values of F1A1 and F1A2 decreased whereas
the values of F1B1 and F1B2 increased as the ratio b/a increased. These observations show that at an angle θ = 15◦, as the
length of the second crack increases, the severity at the second crack tips is more significant than the first.

Fig. 5 Nondimensional SIF for two inclined cracks when α1 = α2 = 20◦ as b/a changing (Fig. 1).

www.zamm-journal.org C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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1488 R. A. Rafar et al.: Stress intensity factor for multiple inclined or curved cracks problem in circular positions

3.2 Example 2

Consider two curved cracks subjected to the remote tension σ∞
x = σ∞

y = p (Figs. 6 and 7). The radius of L1 and L2 is
denoted as R1 and R2 with length 2a and 2b, respectively. The calculated results for the SIFs at crack tips A1, A2, B1, and
B2 are

KiAj
= FiAj

(θ, R2/R1)p
√

πa,

KiBj
= FiBj

(θ, R2/R1)p
√

πb, i, j = 1, 2.
(16)

The obtained results for the problems in Fig. 6 for R1/R = 0.9 and θ = 180◦ are listed in Table 2.

Fig. 6 Two curved cracks in an infinite plate.

Table 2 Nondimensional SIFs for the problem shown in Fig. 6.

R2/R1 F1A1 F2A1 F1A2 F2A2 F1B1 F2B1 F1B2 F2B2

0.1 0.3753 -0.3776 0.3764 0.3775 0.3030 -0.4386 0.3286 0.4598

0.2 0.3725 -0.3797 0.3764 0.3788 0.3165 -0.4415 0.3166 0.4663

0.3 0.3685 -0.3840 0.3763 0.3809 0.3294 -0.4425 0.3039 0.4729

0.4 0.3643 -0.3912 0.3763 0.3840 0.3416 -0.4421 0.2908 0.4798

0.5 0.3605 -0.4017 0.3764 0.3882 0.3529 -0.4410 0.2772 0.4863

0.6 0.3582 -0.4163 0.3770 0.3936 0.3632 -0.4388 0.2642 0.4923

0.7 0.3580 -0.4358 0.3785 0.4003 0.3726 -0.4365 0.2539 0.4978

0.8 0.3607 -0.4614 0.3814 0.4086 0.3812 -0.4345 0.2511 0.5027

0.9 0.3631 -0.4937 0.3866 0.4189 0.3888 -0.4327 0.2678 0.5084

1.0 0.3297 -0.5316 0.3949 0.4324 0.3949 -0.4324 0.3297 0.5316

For the problem in Fig. 7, the results are plotted in Figs. 8 and 9. Fig. 8 presents the nondimensional SIF versus
the angle of positions of second crack, θ . Fig. 8 a shows that the values of F1 for the crack tip A1 when R2/R1 =
0.1, 0.5, 0.9 have the maximum value at the angle θ = 82◦, 79◦, and 79◦, respectively. This result can be explained by
observing that at each angle θ , the crack tip A1 lies very closed to the second crack. In Fig. 8 b, there is a significant
effect at R2/R1 = 0.9 as the angle θ increased. Fig. 8 c exhibits that the severity at the crack tip B1 is significant at
the angle θ = 79◦ for the case R2/R1 = 0.9. From the data in Fig. 8 d, it is apparent that the nondimensional SIFs
fluctuate as the angle θ increased. This result has shown that the second crack has a strong shielding effect on the crack
tip B2.

Fig. 9 shows the graphs of nondimensional SIF versus the ratio R2/R1. For θ = 180◦, there has been a slight change of
the nondimensional SIF values at the first (9 a and 9 b) and second cracks tips (9 c and 9 d) as the ratio R2/R1 increased.

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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Fig. 7 Two curved cracks placed in a circular position in plane
elasticity.

Fig. 8 Nondimensional SIF for two curved cracks as θ varies (Fig. 7).

This observation shows that at an angle θ = 180◦, the severity at both curved cracks tips is not significant. In Figs. 9 a
and 9 b, the effect at θ = 90◦ on the value of F1 is higher than θ = 55◦. From Fig. 9 c, as R2/R1 ≥ 0.34, the effect at
θ = 55◦ on the value of F1 is higher than θ = 90◦, and in Fig. 9 d, the effect at θ = 55◦ on the value of F1 is higher than
θ = 90◦ as R2/R1 increased.

www.zamm-journal.org C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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1490 R. A. Rafar et al.: Stress intensity factor for multiple inclined or curved cracks problem in circular positions

Fig. 9 Nondimensional SIF for two curved cracks when R2/R1 changing (Fig. 7).

3.3 Example 3

Consider the interaction between curve and inclined crack with length 2a and 2b, respectively, in circular positions (Fig. 10).
The remote tension is σ∞

x = σ∞
y = p. The calculated results for the SIFs at the crack tips A1, A2, B1, and B2 are

KiAj
= FiAj

(θ)p
√

πa,

KiBj
= FiBj

(θ)p
√

πb, i, j = 1, 2.
(17)

Fig. 10 Curved and inclined cracks placed in a circular position in
plane elasticity.
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Fig. 11 demonstrates the nondimensional SIF versus the angle of positions of second crack, θ , for α = 20◦.
Fig. 11 a presents the nondimensional SIFs for b/R1 = 0.1 and δ = 85◦ at the angle 6◦ ≤ θ ≤ 180◦. The result shows
that the shielding effect on the crack tips of inclined crack (B1 and B2) is most obvious at 40◦ < θ < 120◦, but then less
significant effect on the curved crack tips (A1 and A2) as θ increased. The highest value of F1B1 is found at the angle θ = 90◦

with the value F1B1 = 1.46010, while for F1B2 the same phenomenon happen at θ = 99◦ with the value F1B2 = 1.42263.
Fig. 11 b exhibits the nondimensional SIFs for the ratio b/R1 = 0.5 and δ = 45◦ at the angle 30◦ ≤ θ ≤ 180◦. As θ < 130◦,
the shielding effect on the inclined crack is significant. Meanwhile, the effect on the curved crack is more obvious on the crack
tip A1 than A2 as θ increased. Figs. 11 c and 11 d show the nondimensional SIFs for the ratio of b/R1 = 0.9 and 1.0, respec-
tively, when δ = 45◦ at the angle 36◦ ≤ θ ≤ 180◦. Since the angle θ is varied, the shielding effect on the curved and inclined
cracks is easily seen. However, the value of SIF at the right crack tip of inclined crack (B1) is not significant as the angle θ

increased.

Fig. 11 Nondimensional SIF for α = 20◦ when θ changing.

Fig. 12 illustrates the nondimensional SIF against the ratio b/R1 for α = 30◦ where the SIF at the crack tips are defined
as

KiAj
= FiAj

(a/R1)p
√

πa,

KiBj
= FiBj

(b/R1)p
√

πb, i, j = 1, 2.
(18)

Figs. 12 a and 12 b have a similar pattern of nondimensional SIF. They show that the values of F1A1 and F1A2 are
gradually decreased, while the values of F1B1 and F1B2 are gradually increased. These observations show that, as the ratio
b/R1 increased, the severity at the inclined crack tips is significant compared to the effect on the curved crack tips. In
Fig. 12 c, it is found that the values of F1B1 and F1B2 take rather higher value than the values of F1A1 and F1A2 . In addition,
the inclined crack tips are more severe at b/R1 = 0.02. Fig. 12 d depicts the severity on the cracks tips at the angle θ = 180◦

is not significant as the ratio b/R1 increased.

4 Conclusion

The multiple cracks problems in a circular position in plane elasticity are studied. The hypersingular integral equation for
two cracks have been formulated. The numerical examples showed the behaviour of the stress state at the crack tips. Since

www.zamm-journal.org C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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1492 R. A. Rafar et al.: Stress intensity factor for multiple inclined or curved cracks problem in circular positions

Fig. 12 Nondimensional SIF for α = 30◦ when b/R1 changing.

the angle θ is varied, it is obvious that the second crack tips is most affected than the first crack tips. In addition, with
an increase of the length ratio of the second to the first crack, the shielding effect for the cracks at the angle θ ≤ 90◦ is
obvious.

Acknowledgement The first author would like to thank Universiti Putra Malaysia (UPM), Malaysia for the Putra Grant,
Vot No. 9442300.

Appendix

The following integration rules for the hypersingular and regular integrals, respectively, is very effective to solve the present
problem [4].

1

π
=
∫ a

−a

√
a2 − s2G(s)
(s − s0)2

ds =
M+1∑
j=1

Wj (s0)G(sj ), (|s0| < a), (A1)

1

π

∫ a

−a

√
a2 − s2G(s)ds = 1

M + 2

M+1∑
j=1

(a2 − s2
j )G(sj ), (A2)

where G(s) is a given regular function, M ∈ Z,

sj = s0j
= a cos

(
jπ

M + 2

)
, j = 1, 2, 3, ...,M + 1,

and

Wj (s0) = − 2

M + 2

M∑
n=0

(n + 1)V n
j Un

( s0

a

)
,

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org

 15214001, 2017, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.201600290 by K

yushu Institute O
f T

echnology, W
iley O

nline L
ibrary on [07/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZAMM · Z. Angew. Math. Mech. 97, No. 11 (2017) / www.zamm-journal.org 1493

where

V n
j = sin

(
jπ

M + 2

)
sin

(
(n + 1)jπ

M + 2

)
.

Here Un(t) is a Chebyshev polynomial of the second kind, defined by

Un(t) = sin

(
(n + 1)θ

sin θ

)
, t = cos θ.

H1(s) and H2(s) can be evaluated using

H1(s) =
M∑

n=0

c1nUn

( s

a

)
, |s| ≤ a, (A3)

and

H2(s) =
M∑

n=0

c2nUn

( s

b

)
, |s| ≤ b, (A4)

where

c1n = 2

M + 2

M+1∑
j=1

V n
j H1(s1), c2n = 2

M + 2

M+1∑
j=1

V n
j H2(s2), (A5)

and H1(s1) and H2(s2) are defined from Eqs. (10) and (11), respectively.
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